ACTNET: End-to-End Learning of Feature Activations and Multi-stream Aggregation for Effective Instance Image Retrieval

نویسندگان

چکیده

We propose a novel CNN architecture called ACTNET for robust instance image retrieval from large-scale datasets. Our key innovation is learnable activation layer designed to improve the signal-to-noise ratio of deep convolutional feature maps. Further, we introduce controlled multi-stream aggregation, where complementary features different layers are optimally transformed and balanced using our layers, before aggregation into global descriptor. Importantly, parameters blocks explicitly trained, together with parameters, in an end-to-end manner minimising triplet loss. This means that network jointly learns filters their optimal tasks. To knowledge, this first time parametric functions have been used control learn aggregation. conduct in-depth experimental study on three non-linear functions: Sine-Hyperbolic, Exponential modified Weibull, showing while all bring significant gains Weibull function performs best thanks its ability equalise strong activations. The results clearly demonstrate significantly enhances discriminative power features, improving over state-of-the-art

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The design of end-to-end optimal image retrieval systems

In the last few years, image retrieval has evolved from early simplistic solutions (such as histogram intersection) to more principled approaches that can be shown to be optimal under sensible criteria for the retrieval problem. We discuss a decision theoretic formulation that enables the design of systems where all components are optimized with respect to the same end-to-end performance criter...

متن کامل

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology...

متن کامل

End-to-End Learning for Image Burst Deblurring

We present a neural network model approach for multi-frame blind deconvolution. The discriminative approach adopts and combines two recent techniques for image deblurring into a single neural network architecture. Our proposed hybrid-architecture combines the explicit prediction of a deconvolution filter and non-trivial averaging of Fourier coefficients in the frequency domain. In order to make...

متن کامل

Unsupervised End-to-end Learning for Deformable Medical Image Registration

We propose a registration algorithm for 2D CT/MRI medical images with a new unsupervised end-to-end strategy using convolutional neural networks. We also propose an effective way to introduce an ROI segmentation mask to our neural networks to improve performance. The contributions of our algorithm are threefold: (1) We transplant traditional image registration algorithms to an end-to-end convol...

متن کامل

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2021

ISSN: ['0920-5691', '1573-1405']

DOI: https://doi.org/10.1007/s11263-021-01444-0